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We propose and experimentally test a mechanism for a class of principal-agent problems 
in which agents can observe each others’ efforts. In this mechanism each player costlessly 
assigns a share of the pie to each of the other players, after observing their contributions, 
and the final distribution is determined by these assignments. We show that efficiency can 
be achieved under this simple mechanism and, in a controlled laboratory experiment, we 
find that players reward others based on relative contributions in most cases and that the 
players’ contributions improve substantially and almost immediately with 80 percent of 
players contributing fully.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

It can be difficult for a principal to observe individual agent’s effort levels, particularly when agents work in teams. The 
extensive monitoring that would be required may not be feasible or cost-effective. Profit sharing has been suggested as a 
response (Weitzman and Kruse, 1990), since giving each of the agents a stake in an enterprise’s profits does provide a link 
between agent contribution and agent reward that is missing from a fixed wage or salary structure. But under an equal 
sharing allocation, which is the natural allocation for a principal to impose when she cannot observe individual agent’s 
behaviour, a free-rider problem arises since each agent bears the full cost of their contribution but only reaps 1

N th of the 
benefit in an N-agent team. Unless the costs of contribution are low or the interdependencies between agent productivities 
in team production are high (Heywood and Jirjahn, 2009), agents will not contribute their social optimal contribution under 
an equal-sharing regime. If rewards are not related to contribution, an agent who feels under-compensated may end up 
reducing her contribution.
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Although the principal may be unable to observe agents’ contributions, there will be occasions where the agents them-
selves are in a position to observe each others’ actions.1 The challenge then for the principal is to design a mechanism 
that elicits and uses this information to induce the appropriate levels of contribution from the agents. In this context, we 
consider a simple mechanism in which agents are not only able to monitor each other, but also in positions to determine 
each other’s payoffs. The mechanism we propose takes the form of a two-stage game. In the first stage, each player chooses 
some contribution level and in the second stage, after having observed each others’ contributions, each player proposes a 
fraction of the total surplus to be received by each of the remaining players. A player’s final share depends on the other 
players’ allocation toward her.

We label our mechanism the “Galbraith Mechanism” (GM hereafter) as the idea is inspired by John Kenneth Galbraith 
who, in an aside in The Great Crash 1929, described a bonus sharing scheme used by the National City Bank (now Citibank) 
in the U.S. in the 1920s. Under this scheme each officer would sign a ballot giving an estimated share of the bonus pool 
towards each of the other eligible officers, himself/herself excluded. The average of these shares would then guide the final 
allocation of the bonus to each of the officers (Galbraith, 1963, p. 171). This sharing mechanism can be applied to many 
economic problems including games with positive externalities and principal-agent problems in which the principal needs 
to distribute some common resource amongst the agents.2

The crucial feature of the GM is that how a player allocates shares in the second stage does not affect her own payoff. 
Therefore, players are able to reward or punish their peers based on the first stage observed actions. A number of studies 
have demonstrated that players exhibit social preferences to “punish” those who free-ride on the group production (Fehr 
and Gächter, 2000) and to “reward” those who contribute more than the group average (Sefton et al., 2007; Nosenzo and 
Sefton, 2012). While such social preferences move the outcome towards social efficiency, self-interest tends to restrict their 
application and the social costs that these punishments and rewards impose on all parties involved tend to limit their 
ultimate success (see Chaudhuri (2010) for a review).3 The GM is based on an endogenous payoff allocation in which players 
can freely decide on some fraction of the co-players’ payoffs. Players are free to punish, to reward, to allocate equally or 
even to allocate randomly to the remaining players, while no costs are incurred by any players in the allocation exercise.

The downside of allowing players the freedom to reward and punish in this way is a potential for multiplicity of Nash 
Equilibria at the second stage of the GM game. Without more structure, every allocation is a Nash Equilibrium in the 
second stage. One method of removing the resulting arbitrariness is by explicitly incorporating a behavioural component 
into the payoff function, which could be seen as reflecting the player’s subjective notion of a “fair” allocation.4 But rather 
than imposing a solution in this way, we leave the question of how the players actually allocate to be uncovered in the 
experiments that follow. That said, our investigation of equilibria in this contribution game does reveal a link between 
efficiency and “fairness”. Much of the theoretical literature on fairness focuses on equality and equal share (e.g., Fehr and 
Schmidt, 1999) regardless of contributions. But a growing empirical literature appeals to other fairness criteria to justify 
unequal allocations, e.g., Adams (1965); Konow (1996; 2000; 2009); Gächter and Riedl (2006); Cappelen et al. (2007); Shaw 
(2013); Cappelen et al. (2013).5 Prominent here is the notion of distributive justice first explored by sociologists (Homans, 
1958; Adams, 1965) and later adopted by behavioural economists (Selten, 1978).

Distributive justice is often defined by the principle that a player’s entitlement towards some group outcome should be 
proportional to her contribution to that outcome.6 In the next section, we establish that such “fair” allocation behaviour can 
support efficiency (full contributions) as part of a SPNE of this contribution game, for all positive returns to total contribu-
tions. It is a pivotal case in that other more pro-contribution biased allocations (i.e. allocations that give disproportionately 
larger allocation shares to those with higher contribution shares) also support the efficient equilibrium under the same 
conditions, but anti-contribution biased allocations (i.e. allocations that give disproportionately larger allocation shares to 
those with lower contribution shares), such as equal shares, only support the efficient equilibrium at higher returns to total 
contributions. Proportional allocations feature prominently in our experimental results.

The GM is also “simpler” than other endogenous mechanisms proposed to solve social dilemma problems. For example, 
Andreoni and Varian (1999) studied a mechanism where players can agree on a pre-play contract before playing the prison-

1 Freeman (2008) reports survey results showing: that most workers believe that they are able to detect shirking by co-workers; that those participating 
in a profit-sharing scheme are more likely to act against shirking; and that such anti-shirking behaviour tends to reduce shirking.

2 A familiar example where our mechanism might be applied is the division of marks in university level group assignments. Professors typically observe 
only the final output but wish to award marks based on individual students’ inputs. In such a situation, our mechanism can be described by a two stage 
game in which students choose how much to contribute in the first stage and in the second stage, after observing each others’ contributions, each student 
proposes a fraction of the total marks (the sum of marks given to all students in the group) to be given to each of the remaining students in his group.

3 The practicality of implementing “costly punishment” within organisations remains unclear (Nikiforakis, 2008).
4 Konow (2000) adds a loss component to the player’s utility function to capture the cognitive dissonance suffered whenever the player himself does not 

abide by the distributive justice principle towards other players.
5 The literature distinguishes between two types of allocators: stakeholders and spectators. Stakeholders can allocate stakes to themselves in the alloca-

tion decisions and a self-biased fairness view may occur (Konow, 2000). Spectators allocate among the others and therefore, are more likely to maintain 
impartiality. Under the GM, all allocators are spectators because their allocation decisions do not affect their own shares.

6 In one of Konow’s (2000) experiment treatments, participants were divided into groups of two and were asked to fold envelopes as a task. A piece rate 
per envelope was paid to each group. A disinterested third party was then asked to divide each group’s earnings between the group members. It was found 
that more than 90% of third parties allocated to each member a share that was proportional to the member’s contribution, i.e., the number of envelopes 
they fold.
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er’s dilemma game. However, their mechanism does not perform well when tested in laboratory settings (Hamaguchi et al., 
2003; Bracht et al., 2008). While there are other mechanisms that perform better in the laboratory, for example, Falkinger 
et al. (2000); Masuda et al. (2014) and Stoddard et al. (2014), they either add an enforcement institution, or “impose” an 
informed third party to allocate the shares. In the context of an uninformed principal and informed agents, the GM is a 
method of determining an informed allocation for the principal to make which requires only that the principal collate the 
allocation shares proposed by the players and distribute accordingly.7 Provided the players are inclined to reward contribu-
tion in the second stage, and they anticipate this happening at the first stage, the GM should yield outcomes closer to social 
efficiency than an equal shares mechanism.8

Perhaps the model closest to ours is Baranski (2016) who considers a class of voluntary contribution mechanism in which 
the players’ shares of the group fund are determined using a Baron and Ferejohn (1989) multilateral bargaining procedure in 
which each player can be randomly chosen to be a proposer at a certain period. In each period, after a division is proposed, 
the remaining players can vote to agree or disagree with the proposal. The bargaining process ends if a majority agree with 
the proposer and the fund is divided as per the proposal. The most important distinction between this mechanism and the 
GM lies in the allocation stage which takes the form of a one-shot game in the GM, whereas in Baranski’s mechanism, it 
is given by a multi-stage bargaining process. Furthermore, the GM does not require a randomly chosen proposer as each 
player simply proposes a share for his peers. In terms of experiment results, both mechanisms enjoy a substantial increase 
in the contribution levels once they are introduced.9

In summary, the main contribution of this paper is to propose a simple mechanism and to test it experimentally. As 
noted, this mechanism: (i) allows costless reward and punishment at the allocation stage; (ii) removes the bias arising when 
a player proposes an allocation to himself; and (iii) avoids the necessity of imposing an informed allocator or randomly 
selecting one as part of a bargaining process. Only low returns to scale, where equal shares would not automatically generate 
full contributions, are considered. Provided players reward others based on their contributions at the allocation stage, and 
anticipate such rewards at the contribution stage, we expect that social efficiency can be achieved under this mechanism. 
This allocative behaviour does seem to be prevalent in the experiments reported below.

Our analysis provides five main findings. First, the GM produces a much higher average contribution level than equal 
sharing, for all returns to scale in the range considered. Second, under the GM the average contribution level is sensitive 
to the returns of scale and is higher when returns to scale are higher. Third, most allocations under the GM are related 
to players’ contributions and the overall outcomes are consistent with players following a proportional allocation. Finally, 
players who receive allocations according to their relative contribution in the previous round increase their contributions 
in the next round. Relative to this, high (low) contributors last round tend to have lower (higher) contributions this round. 
But all tend to increase their contributions, except high contributors in the last round who were under-compensated at the 
allocation stage.

The remainder of the paper is organised as follows. Section 2 presents our mechanism and its assumptions. Section 3
describes the experimental design. Experimental results are discussed in section 4 and section 5 concludes.

2. Galbraith mechanism

2.1. The model

We consider the following principal-agent problem, with three agents (players) and one principal, in the context of a 
two-stage game. Each player, indexed i, has an initial endowment of ē > 0 and takes an action ei ∈ Ei = {0, 1, .., ̄e} in the 
first stage. The agents do so simultaneously. The players’ actions determine a joint monetary outcome � = β

∑3
i=1 ei which 

must be allocated among the players, where β > 1 is a parameter that represents the scale of returns of the production 
function. The allocation takes place in the second stage as follows. Each player i observes all actions taken in the first stage 
and proposes share aij of the outcome to each player j �= i such that

aij ∈ [0,1] and aij + aik = 1,where k �= j and k �= i (1)

In other words, each player proposes a fraction of � to be received by each of the other players. They do so simultane-
ously. We let qi denote player i’s final share of the outcome � and we assume that it is determined by: qi = a ji+aki

3 . Finally, 
we let player i’s payoff be given by πi = ē − ei + qi�. We call this mechanism the “Galbraith Mechanism” (GM).

The above can be seen as an instance of the principal-agent problem in which the principal is not able to monitor the 
contribution levels of the agents, who by contrast, can observe each others’ contributions. The principal aims to design 

7 Early mechanism design and implementation literatures have focused on theoretical frameworks in environments in which there is uncertainty about 
the players’s type and where the principal’s main concern is in making the player reveal some information about his type (e.g., see Laffont, 1987). Chen 
(2008) provides a review of mechanisms tested in the laboratory.

8 In practice, discriminatory preferences or collusion by subgroups of players could reduce the efficiency of the mechanism. These possibilities are 
excluded by players’ anonymity and rotation between rounds in the experiments that we report below. Further discussions can be found in Dong (2017).

9 Chen and Gazzale (2004) experimentally tested a family of compensation mechanisms with strategic complementarity and found that supermodularity 
can play an important role in demonstrating how learning in games leads to convergence to Nash Equilibrium.
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a mechanism that can achieve efficiency by eliciting maximum contributions from the agents. We are interested in the 
conditions under which the GM achieves efficiency and whether these conditions are less stringent than those needed 
under the scenario where the principal allocates an equal share to each agent.10 More precisely, we look for an equilibrium 
of the game, in which each player chooses ē in the first stage.

2.2. Strategies and equilibrium in extensive-form

The game can be formally described as an extensive-form game, with simultaneous moves at each stage. For this class 
of games, Moore and Repullo (1988) gave a formulation of an extensive game that allows for simultaneous moves at the 
decision nodes. Under their formulation, at each node, all players know the entire history of the moves preceding it, and 
they can therefore use history-dependent strategies.11 Following Moore and Repullo, we define a strategy of player i by the 
pair si ≡ (ei,ai (e)), where ei is a contribution level of the player at his first information set and ai (e) ≡ (

aij (e) ,aik (e)
)

is an 
allocation function that depends on the first stage contribution vector e and that satisfies (1). Thus, the allocation function 
prescribes an action to player i for each of her remaining information sets.12 We then refer to triple s = (s1, s2,s3) as a 
strategy profile of the game.13 We use the same definitions of Nash Equilibrium (NE) and Subgame Perfect Nash Equilibrium 
(SPNE) as in Moore and Repullo. Using their formulation of an extensive game, we can simply use backward induction to 
solve the game, starting with the last subgames, that is, the subgames starting in stage two, taking contribution vector e as 
given in each of those subgames.

It can easily be verified that every function a(e) = (a1(e), a2(e), a3(e)) prescribes a Nash equilibrium in each stage two 
subgame. Then, by backward induction, it suffices to find the Nash Equilibrium of the resultant first stage game, by taking 
function a(e) as given.14,15 Then, e∗ ≡ (e∗

i , e
∗
−i) is a Nash Equilibrium of the resultant first stage game if for all i and for all 

ei , we have

πi((e∗
i , e∗

−i), (a(e∗
i , e∗

−i))) ≥ πi((ei, e∗
−i), (a(ei, e∗

−i))) (2)

It should be clear that the satisfaction of the above inequality, together with the fact that every allocation function a(e)
prescribes a Nash equilibrium in each second stage subgame, imply that s∗ is a SPNE of the game, where

s∗ = ((e∗
1,a1(e)), (e∗

2,a2(e)), (e∗
3,a3(e)))

We are interested in allocation functions that support the full contribution vector (ē, ̄e, ̄e) as part of a SPNE.

2.3. General allocations

We can write player i’s payoff function as

πi((ei, e−i),a(ei, e−i)) = qi(e)β[e1 + e2 + e3] + ē − ei (3)

where qi(e) is player i’s allocation share (that he receives from the others). From (2), for full contributions to be part of a 
SPNE given some a(e), the following must hold.16

3qi(ē)β ē + ē − ē ≥ qi(ei, ē−i)β[ei + 2ē] + ē − ei (4)

for all i and for all ei ∈ Ei = {0, 1, ..., ̄e}. We split condition (4) into two cases:
(i) If ei = 0, then (4) becomes

3qi(ē)β ≥ 2qi(0, ē−i)β + 1 (4a)

10 Our benchmark scenario is one in which there is imperfect information so that even agents cannot observe each other’s contribution, and the principal 
uses an equal division allocation in this case.
11 Note that Moore and Repullo (1988) study a related well-known class of implementation problems in which the principal tries to implement an efficient 

outcome, under an environment where the agents can be of different types (each type is defined by some preference relation). Our setting differs from 
theirs in that there is no uncertainty about the players’ types and in our case, the principal is trying induce some action by the players, rather than making 
them reveal some information about their types.
12 Note that since ai (e) is a function that maps from the set of all possible stage-one contribution vectors into the set of all possible allocation pairs to 

players j and k, it also prescribes allocations at the off-path subgames and thus, as required by the definition of a strategy in extensive-form, si prescribes 
some action at every information set of player i.
13 An equivalent way of writing strategy profiles is adopted by Chen and Gazale (2004). Applying their definition to our context, a strategy profile would 

be given by a sextuple ((e1, e2, e3) , (a1 (e) ,a2 (e) ,a3 (e))).
14 Again, observe that any function will work as all allocation functions are NE in all stage two subgames.
15 Such an approach was used by Chen and Gazzale (2004) and by many others in the two-stage games literature.
16 Note that qi(e) is uniquely determined by a(e).
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(ii) If 0 < ei < ē, then we can rewrite (4) as[
β

qi(ē)

ci(ē)
− 1

]
ē ≥

[
β

qi(ei, ē−i)

ci(ei, ē−i)
− 1

]
ei (4b)

where ci(ei, e−i) = ei
e1+e2+e3

is player i’s contribution share. For case (ii), let Ri(e) ≡ qi(e)
ci(e) denote the ratio of the allocation 

share to the contribution share, which we call the Allocation Contribution Ratio (ACR) of player i.
We say that an allocation is completely fair if

qi(e) =
{

1
3

ci(e)

if e = (0,0,0)

otherwise

That is, each player receives an allocation share equal to his contribution share, except when there are no contributions 
when all players receive an equal share (of nothing). We can then show:

Proposition 1 (Complete Fairness sufficient for Efficiency). If β > 1 and if there exists some allocation function a′(e) such that the 
allocation to each player i is completely fair, then s = ((ē, a′

1(e)), (ē, a′
2(e)), (ē, a′

3(e))) is an SPNE of the game.

Proof. (i) if ei = 0, then qi(0, ̄e−i) = ci(0, ̄e−i) = 0 and qi(ē) = ci(ē) = 1
3 . Substituting in (4a) we obtain β ē ≥ ē, which is 

satisfied since β > 1. (ii) If 0 < ei < ē, (4b) becomes [β − 1]ē ≥ [β − 1]ei , which is also satisfied since β > 1. �
Thus, complete fairness in allocations implies that full contributions are part of a SPNE of the game.17

Unfortunately, it is not always possible to make the ACR equal to unity in the GM. For example, suppose that player 
i’s contribution share is unity, then under the GM, the maximum allocation share that player i can obtain is 1+1

3 < 1. 
Fortunately, there are other allocations that deviate from complete fairness that can still achieve the efficient outcome.

Under a completely fair allocation, a player’s allocation share adjusts in the same direction and in exactly the same 
proportion as any change in his contribution share, and Proposition 1 shows that this response in the allocation share is 
sufficient to discourage a player from reducing his contribution below the full contribution equilibrium. It therefore follows 
that allocations which adjust a player’s allocation share in the same direction and more than proportionately to any change 
in his contribution share will also support this equilibrium. Relative to a completely fair allocation, these allocations have 
a “pro-contribution” bias (i.e. biased in favour of the largest contributions), and we give an example of this in the next 
sub-section.

What about allocations that are “anti-contribution” biased (i.e. biased in favour of the smallest contributions)? Can 
allocation behaviour which changes a player’s allocation share less than proportionately to any change in his contribution 
share also support the full contribution equilibrium? We now use (4a) and (4b) to show that it can, but that the extent 
to which an anti-contribution biased allocation can support full contributions as part of a SPNE, depends on the returns to 
scale (β).

We assume that the allocation functions treat all the players in a symmetric way so that, for each contribution vector, 
changing the names of the individuals would not change their allocation.18 In the context of the GM, one implication of the 
symmetry assumption is that two players who make the same contributions will receive the same allocation shares.

Consider first the case where 0 < ei < ē, then (4b) can be rewritten as {βRi(ē) − 1}ē ≥ {βRi(ei, ̄e−i) − 1}ei which leads 
to

{βRi(ē) − 1}[ē − ei] ≥ β[Ri(ei, ē−i) − Ri(ē)]ei (5)

Since Ri(ē) = 1 as allocation shares are symmetric, we can, after some rearrangement, rewrite (5) as

{β − 1}
β

≥ [Ri(ei, ē−i) − Ri(ē)]
[ē−ei ]

ei

(6b)

The RHS of (6b) is the ratio of the change in the ACR to the proportional change in the contribution. Since we are consid-
ering cases where [Ri(ei, ̄e−i) − Ri(ē)] > 0, that is the allocation share to i falls by less than i’s contribution share when i
reduces his contribution, condition (6b) then puts an upper bound on the extent to which this can occur and still have full 
contributions as part of a SPNE. Note that this upper bound is increasing in β .

When ei = 0, ci(0, ̄e−i) = 0 and Ri(0, ̄e−i) is undefined. Our interest then is to what extent qi(0, ̄e−i) can exceed zero 
(i.e. player i receives a positive allocation share while making no contribution) while still supporting full contributions as 
part of a SPNE. Substituting qi(ē) = 1

3 in (4a) we obtain

17 Furthermore, it is straightforward to show that complete fairness in allocations also rules out the equilibrium in which no player makes a positive 
contribution if β > 1.
18 This symmetry condition is often referred to as anonymity in social choice theory (see Myerson, 2013).



214 L. Dong et al. / Games and Economic Behavior 115 (2019) 209–224
{β − 1}
2β

≥ qi(0, ē−i) (6a)

Together (6a) and (6b) show how far an allocation can be anti-contribution biased while still supporting full contributions 
as a part of a SPNE. Note that the left sides of both inequalities tend to zero as β tends to unity. The smaller is the returns 
to scale in production, the smaller the anti-contribution bias must be to support full contributions as part of a SPNE.19

2.4. Specific allocations under the GM

We can use the results of the previous subsection to determine the values of β for which any specific allocation be-
haviour can support full contributions as part of a SPNE. We are interested in allocation behaviour that provides this support 
as a part of SPNE, for the lowest possible values of beta. From the previous subsection we know we could achieve this by 
restricting our attention to allocations that are symmetric and pro-contributions. We first consider the benchmark case of 
equal division and compare it with two specific allocations (“winner takes all” and a proportional allocation), and a gener-
alised proportional allocation that encompasses the others as special cases and later allows us to categorise the allocation 
behaviour of the experimental subjects.20

2.4.1. Equal shares
An egalitarian allocation is anti-contribution biased since a player’s allocation share is unaffected by his contributions—i.e. 

qi(e) = 1
3 for all i. Then if ei = 0, (6a) becomes {β−1}

2β
≥ 1

3 which is satisfied if and only if β ≥ 3; while if 0 < ei < ē, then 

Ri(ei, ̄e−i) − Ri(ē) = 1
3
ei

ei+2ē

− 1
3
1
3

= 2
3

(ē−ei)
ei

and (6b) becomes {β−1}
β

≥ 2
3 which is also satisfied if and only if β ≥ 3.

Only when β ≥ 3, can we achieve an efficient outcome with equal shares. The potential benefits of the GM therefore 
arise when β < 3, and our results will be benchmarked against this case. In Appendix A.2 we show that zero contributions 
can be supported as part of a SPNE if β < 3.

2.4.2. Winner takes all
This is the extreme case of a pro-contributions biased allocation. We say player i follows “winner takes all” allocation 

behaviour if he allocates all to the highest contributor when the other players make unequal contributions and divides it 
equally between them otherwise—i.e.

aij(e) =
{

1
1
2

if e j > ek

if e j = ek

Then, if ei = 0, qi(ē) = 1
3 , qi(0, ̄e−i) = 0 and (4a) is satisfied for all β > 1. While if 0 < ei < ē, then qi(ei, ̄e−i) = 0 and (4b)

becomes [β − 1]ē ≥ −ei , which is also satisfied as β > 1.
A winner-takes-all allocation supports full contributions as a SPNE for all β > 1. In Appendix A.2 we show that zero 

contributions can be supported as part of a SPNE under this allocation if β ≤ 3
2 .

2.4.3. Proportional allocation
We say that player i follows proportional allocation behaviour if he allocates to the other players exactly according to their 

relative contributions—i.e.

aij(e) =
⎧⎨
⎩

e j
e j+ek

1
2

if e j + ek > 0

if e j + ek = 0

This corresponds to a fair allocation by player i to the other players in the game. We can now show the following:

Proposition 2. Suppose that β ≥ 6
5 , then s = ((ē1,a1(e)), (ē2,a2(e)), (ē3,a3(e))) is a SPNE of the game, where function a(e) =

(a1(e),a2(e),a3(e)) satisfies proportional allocation behaviour.

Proof. (i) If ei = 0, then qi(0, ̄e−i) = 0 and (6a) is satisfied for all β > 1.

(ii) If 0 < ei < ē, then qi(ei, ̄e−i) = 2
3

{
ei

ei+ē

}
, ci(ei, ̄e−i) = ei

ei+2ē , and Ri(ei, ̄e−i) = 2
3

{
ei+2ē
ei+ē

}
.

19 Note that the results presented in this section readily generalize up to any finite number of players.
20 The necessary and sufficient conditions for full contributions to be supported as a SPNE do not guarantee that this equilibrium is unique, however. To 

illustrate this for each allocation we also present the necessary and sufficient condition for zero contributions to be supported as a SPNE (see appendix A.2 
for details).
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Since Ri(ē) = 1, we have Ri(ei, ̄e−i) − Ri(ē) = 1
3

{
ē−ei
ei+ē

}
. Substituting in (6b) we get

{β − 1}
β

≥ 1

3

{
ei

ei + ē

}
(7)

Since the RHS of (7) is increasing in ei , we get its upper limit by setting ei = ē. This implies that condition (6b) is satisfied 
as long as

{β − 1}
β

≥ 1

6
or β ≥ 6

5
. �

Thus, β ≥ 6
5 is necessary and sufficient for a proportional allocation to support full contributions as part of a SPNE.21

However, in order to rule out zero contributions as part of any SPNE when the proportional allocation is used, we need the 
stringer condition that β > 3

2 , as for the winner takes all allocations (see Appendix A.2).

2.4.4. Generalised proportional allocation
Finally, we present a formula that encompasses a range of individual players allocations to others based on their contri-

butions. For player i, let

ti j(e) = 1

2
+ γ

2

[
e j − ek

e j + ek

]

We say that player i follows generalised proportional allocation behaviour if he allocates to other players as

aij(e) = median{0, ti j(e j, ek),1}
Note that aij(e) = 1 or aij(e) = 0 if ti j(e j, ek) ≥ 1 or ti j(e j, ek) ≤ 0, and aij(e) = ti j(e j, ek) otherwise. Here γ ∈ [0, ∞) is a 

parameter whose magnitude measures player i’s strength of concern for distributive justice. Two special cases illustrate this. 
First, if player i follows egalitarian behaviour and allocates an equal share to other players regardless of their contributions, 
then γ = 0 and aij(e) = 1

2 . Second, if player i follows proportional behaviour and allocates to the other players exactly 
according to their relative contributions, then γ = 1. Players for whom 0 < γ < 1 make allocations that reflect a mixture 
of concerns for both equity and distributive justice. They under-compensate the larger contributor and over-compensate 
the smaller contributor, relative to the proportional allocation and are referred to as “sub-proportionists” below. Players 
for whom γ > 1 over-compensate the larger contributor and under-compensate the smaller contributor relative to the 
proportional allocation, and are referred to as “super-proportionists.”22 We now show

Proposition 3. Suppose that β ≥ max{1, 3
1+ 3

2 γ
}, then s = ((ē1,a1(e)), (ē2,a2(e)), (ē3,a3(e))) is a SPNE of the game, where function 

a(e) = (a1(e),a2(e),a3(e)) satisfies the generalised proportional allocation behaviour.

Proof. See Appendix A.1 �
Note that if all players are super-proportionists with γ ≥ 4

3 then full contributions are part of a SPNE for all β ≥ 1, and 
that zero contributions can be supported as part of a SPNE if β ≤ 3

2 when γ ≥ 1, and β ≤ 3
1+γ otherwise (see Appendix 

A.2).

2.5. Section summary

We began this Section by describing the GM and then identified the conditions under which full contributions could be 
part of a SPNE of our contribution game. We found that an allocation that was completely fair (i.e. where the shares players 
are allocated are always equal to the shares they contributed) or was pro-contribution biased (i.e. where the allocation 
share adjusts in the same direction but more than proportionately with any change in contribution share) would support 
full contributions as part of a SPNE to the game for all β > 1. Allocations that are anti-contribution biased (i.e. where the 
allocation share adjusts in the same or opposite direction but less than proportionately with any change in contribution 
share) could also support full contributions as part of an equilibrium, but only at higher values of β . For example, the egali-
tarian allocation, in which allocation shares are completely divorced from contribution shares, can support full contributions 
as a SPNE, but only if β ≥ 3.

21 Note that this result generalizes to the n-player case. Following the same approach as in Proposition 2 we find that a necessary and sufficient condition 
for a proportional allocation to support full contributions is that β ≥ n(n−1)

n(n−1)−1 . The necessary and sufficient condition for a proportional allocation to 
support zero contributions is that β ≤ n

n−1 . See Appendix A.3.
22 For very large values of γ player i’s allocation will approximate that of rewarding only the higher contributor.
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Table 1
Experiment Design.

Sessions Treatment β Matching 
Protocol

No. of 
subjects

Indep. 
GroupsRound1-10 Round11-20

Control Equal Share Equal Share 1.8 Random 36 4
T0 Equal Share GM1.8 1.8 Random 90 10
T1 Equal Share GM1.2 1.2 Random 90 10

Total: 216 24

Clearly the ability of the GM to support an efficient equilibrium depends crucially on the allocation behaviour of the 
players. We have shown that every allocation function is a NE in all subgames of the second stage, but only some allocations 
will support the efficient equilibrium, depending on β . Whether the players will select such allocations is an empirical 
question which we attempt to answer through our experimental results in the next section.

3. Experimental design and procedure

Our experiments attempt to answer the following two questions: first, how do people allocate in the second stage; and 
second, how do people contribute in the first stage? Since our results indicate that the success of the GM in implementing 
full contributions is likely to be sensitive to the scale of returns on the production function (β), we run two sets of ex-
periments under the GM. Those labelled GM1.8 set β = 1.8, which is above the threshold for a proportional allocation to 
support full contributions as part of a SPNE, and also above the threshold for zero contributions to be supported as part 
of a SPNE. Those labelled GM1.2 set β = 1.2 which is exactly on the threshold for a proportional allocation to support full 
contributions as part of a SPNE, and below the threshold for zero contributions to be supported as part of a SPNE. These 
features lead us to expect greater success for the GM when β = 1.8.

We ran 24 experimental sessions at the Centre for Decision Research and Experimental Economics (CeDEx) in Nottingham 
in February 2015. In total, 216 university students from various fields of study took part, with 9 participants in each 
session. Participants were allowed to participate in only one session. Those participants were drawn from the CeDEx subject 
pool, which was managed using the Online Recruitment System for Economic Experiments (ORSEE; Greiner, 2015). The 
experiment was programmed in z-Tree (Fischbacher, 2007). Each session lasted about 60 minutes and the average payment 
was £8.34 (equivalent to $12.93 or e11.65 at the time of the experiment).

Upon arrival, participants were asked to randomly draw a number from a bag and they were seated in a partitioned 
computer terminal according to that number. The experimental instructions were provided to each participant in written 
form and were read aloud to the subjects (the instructions can be found in Appendix B). The experiment only started after 
all participants had given the correct quiz answers with respect to the instructions. The experiments have three treatments: 
one control treatment and two GM treatments.23 Each experiment contained 20 rounds of decision making tasks that can be 
divided into two segments of ten rounds (see Table 1). The instructions for the second ten-round segment were distributed 
only after the completion of the first ten rounds. In each round, the computer program draws three participants to form a 
group, and the group composition reshuffles every round.24

Equal sharing allocations were applied to all participants in the first ten rounds.25 We used neutral terminology in the 
experiment and the contribution question formulated on the computer screen was “Tokens you want to add to the Group 
Fund:__.” In each round, each player i chose an integer from 0 to 10, which represented her contribution, ei . The production 
function was �(e1, e2, e3) = β(e1 + e2 + e3), and each player’s earning was 10 − ei + 1

3 �. Two alternative values of β are 
considered. In sessions Control and T0, β equals 1.8, and in sessions T1, β equals 1.2.26 At the end of each round, players 
were informed about all group members’ contributions and payoffs and were reminded that they would not be in the same 
group again.

In rounds 11-20, there were two decision stages in each round of the GM. The first stage decision was the same as in 
the Equal Share treatment, that is, each player voluntarily chose an integer from 0 to 10. In the second stage, the computer 
screen displayed each group members’ contribution decision in the first stage and the value of the group fund. Each player 
was then asked to divide 1

3 � between the other two group members with a resolution of 0.1. In other words, player i

23 We had 10 sessions each of the GM but only 4 sessions of the Control treatment because previous studies strongly and robustly predict that equal 
share produces a low contribution rate (Ledyard, 1995). This conclusion was also supported by all four sessions of the control treatments.
24 The matching of the three-person group was pre-determined by the computer software. Specifically, each participant would never be in the same 

group with the two other participants twice during the whole experiment. We randomized the display of players’ contribution details on the screen in each 
round; in this way players were not able to track the identities of other players across rounds.
25 The equal sharing allocation, where the final production is equally divided among group members, is equivalent to the voluntary contribution mech-

anism. To compare with other studies (e.g., Andreoni and Varian (1999); Fehr and Gächter (2000); Falkinger et al. (2000)), we introduce our mechanism 
after ten rounds of the equal sharing allocation.
26 In session T1, β equals 1.2 in all rounds to minimize the variable changes during the experiment. As will be shown in section 4.1, the first ten rounds 

of all three treatments yield very similar results.
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Fig. 1. Time-path of the Average Contribution by Treatment.

allocated ãi j to player j and allocated the remaining ãik = �
3 − ãi j to player k.27 Player i’s share of the group production 

was determined by the allocation decisions by player j and player k. Her payoff function was πi = 10 − ei + ã ji + ãki . In the 
control treatment, players simply repeated the same decision task as in rounds 1-10 for another ten rounds.

4. Experimental results

We split the analysis into three parts. Section 4.1 looks at the difference in the contribution decisions across treatments. 
Section 4.2 analyses the participants’ allocation decisions, and Section 4.3 studies how allocation choices affect the players’ 
contribution decisions.

4.1. Contributions

Fig. 1 displays the time-path of the average contributions over all 20 iterations for each treatment. In the first ten rounds, 
when the equal sharing allocation is used, we observe a steady decline in the level of contributions over time. Participants 
start with an average contribution level of 3.32 (3.72 if β equals 1.8 and 2.92 if β equals 1.2) and end up with 0.63 in 
round 10 (0.65 if β equals 1.8 and 0.61 if β equals 1.2). The average contribution levels do not differ across treatments 
(p > 0.1). This finding is consistent with results from other studies in which group compositions are reshuffled every round 
(e.g., Croson, 1996; Fischbacher and Gächter, 2010).

At the beginning of round 11, we introduce the GM in 20 out of 24 sessions. This introduction triggers a dramatic 
increase in the contribution level. Specifically, in round 11, the contribution level in both the GM1.8 (mean = 5.17) and the 
GM1.2 (mean = 4.03) are significantly higher than the contribution in the control treatment (mean = 1.33, Mann-Whitney 
test, p < 0.01).28 Over the ten rounds of the GM1.8, the average contribution is 8.0 and the final round contributions reach 
an average of 9.16. Indeed, in round 20, most players (82.8%) in the GM1.8 contribute fully to the group fund, and 21 out 
of 30 three-player groups coordinate on the (10,10,10) equilibrium. Compared to the GM1.8, the average contribution in the 
GM1.2 (mean=5.72) is relatively lower (p < 0.05). Specifically, in the last round of the GM1.2, the average contribution is 
6.42; 38.9% of the players contribute fully and 7 out of 30 groups coordinate on the (10,10,10) equilibrium. But there are 
also 11.1% of the players contributing zero and 1 of the 30 groups coordinates on the (0,0,0) equilibrium. On the other 
hand, almost all players (35 out of 36) in the control treatment have zero contribution in later rounds. In summary, the GM 
mechanism produces an initial jump that is further improved in subsequent rounds. Appendix C1 shows more comparative 
statistics of the contribution decisions across sessions and treatments.

Result 1. Both the GM1.8 and the GM1.2 produce a much higher average contribution level compared to the control treatment, partic-
ularly in later rounds. The average contributions in the GM1.2 are lower than those in the GM1.8, consistent with our expectations. But 
even with the lower β value, we observe that the GM has greatly improved the contribution rate relative to equal sharing.

27 In section 2, aij is defined as the proportion player i allocates to player j, and aij + aik = 1. To calculate player’s final profit, aij would be normalized 
by dividing by the group number and multiplying by the joint profit, i.e., πi = 10 − ei + a ji+aki

3 �. To make our experiment cognitively easy, we asked 
participants to divide �

3 ex ante. In other words, we set ãi j = �
3 aij . We also conducted additional sessions where participants directly allocate one between 

the other two group members, as presented in section 2, and find no significant difference in contribution between both frames (p > 0.1).
28 Because the Mann-Whitney test requires independent observations, the tests are conducted on sessions’ average contribution level. The two-sided p

values are reported.
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Notes: Fig. 2(a) and Fig. 2(c) includes 900 allocation decisions each from the GM1.8 and the 
GM1.2 respectively. The size of the circle indicates the relative frequency of the observation. 
Observations lying on the 45-degree line means player i allocate proportionally according to 
others’ relative contributions.

Fig. 2. Allocation Decisions in the Galbraith Mechanism.

4.2. Allocation decisions

In this section, we investigate players’ allocation decisions. Recall that for each round in the GM treatment, participants 
need to decide on how to allocate between the other two group members. The allocation must sum up to one third of the 
group fund, that is, ãi j + ãik ≡ �

3 . In the following analysis, we only consider each player i’s allocation to player j (randomly 
determined from the data), ãi j , because the allocation to each player k is automatically determined by ãik ≡ �

3 − ãi j . We 
represent players’ allocation choices from the GM1.8 and GM1.2 in Fig. 2a and Fig. 2c, respectively. The horizontal axis 
indicates the fraction player j contributes relative to player k, that is, e j

e j+ek
, and the vertical axis shows the actual fraction 

i allocates to player j, that is, ãi j

ãi j+ãik
. The size of the circle indicates the relative frequency of the observation. Around 55.4% 

of the observations in the GM1.8 and 41.7% in the GM1.2 fall exactly on the 45-degree line where e j
e j+ek

= ãi j

ãi j+ãik
. This means 

a large number of players allocate proportionally according to the others’ relative contributions.
Table 2 presents the results of further investigation of contributions using random effects regressions. In these regressions 

the dependent variable is the fraction player i allocates to player j, and the independent variable is the contribution of j
relative to k. Allocating proportionally means the coefficient of e j

e j+ek
equals 1 and the intercept term equals zero, and the 

estimates of these parameters in both regressions are consistent with this prediction. For both the GM1.8 and the GM1.2, 
the estimated coefficients (0.919 and 0.933, respectively), are different from zero (p < 0.01) and not significantly different 
from one (F-test, p > 0.1). The intercept, meaning the fraction player i allocates to player j when player j contributes zero, 
is not significantly different from zero (p > 0.1).

But even a casual look at the spread of observations in Fig. 2a and Fig. 2c suggests that not all players in fact allocate 
proportionally. Not all observations are gathered about the 45-degree line. In particular, there appears to be some clustering 
of observations above this line when e j

e j+ek
> 1

2 , and a corresponding clustering below this line when e j
e j+ek

< 1
2 , in both 

cases. After further inspection we find that we can categorise allocators into five different types as follows.
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Table 2
Allocation Choice: Random Effects.

Dep. Variable: Fraction Player i Allocate to Player j:
aij

ai j+aik

(1) (2) (3) (4)

Player j’s relative 0.917∗∗∗ 0.933∗∗∗ 0.917∗∗∗ 0.933∗∗∗
contribution

e j
e j+ek

: β1 (0.067) (0.056) (0.067) (0.056)

Constant: β0 0.044 0.034 0.045 0.034
(0.036) (0.029) (0.039) (0.030)

#Data Used GM1.8 GM1.2 GM1.8 GM1.2
#Data Exclusions No No Yes Yes
#Observations 900 900 466 648
#Clusters 10 10 10 10

H0 : β1 = 1 1.53 1.43 1.51 1.42
(p = 0.216) (p = 0.232) (p = 0.219) (p = 0.234)

Notes: (1) The table reports the regression results for random-effects model with the standard error clustered at the session level. ∗∗∗ indicates significance 
at 1% level. (2) Column 3 and 4 exclude the observations where we cannot distinguish whether player i is a proportionist or an egalitarian. (3) The results 
remain virtually unchanged if we control period dummies (see Appendix C.1.). (4) We report the test statistics for the hypotheses tests and 2-sided p values 
are in the brackets. (5) Hausman tests for random vs fixed effects model for all regressions yield p values greater than 0.1.

Proportionists (γ = 1) are the players who allocate strictly according to other’s relative contributions, that is, ãi j

ãi j+ãik
=

e j
e j+ek

. Because our software only allows the input with a resolution of 0.1 and e j
e j+ek

may not always be a fraction 

of ten, we define player i as a Proportionist if | ãi j

ãi j+ãik
− e j

e j+ek
|≤ 0.05 (see the category highlighted as Propor-

tionists in Fig. 2b and 2d). In most situations (76.8% in the GM1.8 and 64.4% in the GM1.2), players allocate like 
proportionists.29

Egalitarians (γ = 0) are the players who allocate equally to the other two group members regardless of their contributions. 
In 52.2% of the observations from the GM1.8 and 34.7% from the GM1.2, players allocate equally between the 
other two group members (see the category highlighted as Egalitarians in Fig. 2b and 2d). Note that proportionists 
and egalitarians are not mutually exclusive. For example, if the other two players contribute the same amount, 
both the proportional and the egalitarian allocations predict an equal allocation. This is not a rare case especially 
in later rounds (rounds 16-20), where full contributions of all three players are frequently observed. In total, 
there are 48.2% (GM1.8) and 28.0% (GM1.2) of the observations that can be classified under both proportional 
and egalitarian allocation behaviours. However, when conditioning on the inequality of contributions between the 
other two players, less than 10% of players choose to allocate equally.

Super-proportionists (γ > 1). If player j contributes less than player k, player i, under the “super-proportionists” category, 
rewards player j with less than what a proportionist would give. The other player, player k, is consequently 
over-compensated. 10.5% (GM1.8) and 19.9% (GM1.2) of the observations fall under this allocation behaviour (see 
the category highlighted as super-proportionists in Fig. 2b and 2d).30 In other words, super-proportionists tend 
to “punish” the player who has a lower relative contribution and “reward” the player who has a higher relative 
contribution. Note that the punishment possibility in the GM is different from the “punishment mechanism” in 
Fehr and Gächter (2000). In their setting, players can choose to incur a cost to destroy part of the other players’ 
payoff. With the GM, however, players bear no cost to punish others. Moreover, if a super-proportionist punishes 
one player, the other group member will be over-compensated automatically. Hence, the overall welfare remains 
unchanged.

Sub-proportionists (1 > γ > 0). If player j contributes less than player k, then a “sub-proportionist”, rewards player j
with more than what a proportionist would give. The other player, player k, is consequently under-compensated 
relative to a proportional allocation. 6.3% (GM1.8) and 5.8% (GM1.2) of the observations fall in this category (see the 
category labelled as Sub Proport in Fig. 2b and 2d).31 While a sub-proportionist does award the larger contributor 
a larger share, it is less than proportional to their relative contribution.

29 We also checked the relationship between the difficulty of calculating the contribution proportions and the adoption of the proportional allocation. 
Specifically, we classify each allocation decision as easy, medium, or difficult in terms of calculation. We found that the adoption of the proportional 
allocation does not differ across calculation difficulty levels.
30 Note that unequal contributions is a necessary condition for an allocation to be classified as super-proportional. When contributions are equal, super-

proportionists cannot be distinguished from proportionists or egalitarians. In the GM1.8, 51.8% of the allocation decisions are unequal while in the GM1.2, 
72.0% of them are unequal. If we only count the unequal contributions, 21.9% of the allocation decisions in the GM1.8 and 28.6% in the GM1.2 can be 
classified as super-proportional.
31 Again unequal contributions is a necessary condition for an allocation to be classified as sub-proportional. When contributions are equal, sub-

proportionists cannot be distinguished from super-proportionists, proportionists or egalitarians. If we only count the unequal contributions, 6.9% of the 
allocation decisions in the GM1.8 and 8.1% in the GM1.2 can be classified as sub-proportional.
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Fig. 3. Contribution and Average Profit Allocated to the Player (by the other two group members).

Fig. 4. Contribution and Average Profit.

Spoilers (γ < 0). The remaining 6.3% (GM1.8) and 4.7% (GM1.2) of observations that cannot be captured by any of the 
four allocation behaviours listed above, we label as “spoilers” (see Fig. 2b and 2d). Spoilers allocate a larger share 
to the lower contributor, providing a disincentive for contributions and making an efficient outcome less likely. 
Fortunately such anti-social behaviour is relatively rare.32

Result 2. Most allocations are related to players’ contributions and the overall outcomes are consistent with players following the 
proportional allocation behaviour. Based on the observations where contributions are unequal we conclude that in GM1.8 (GM1.2) 
55.2% (50.6%) of players are Proportionists; 20.4% (27.6%) are Super-Proportionists; 7.7% (9.3%) are Egalitarians; 4.5% (6.0%) are Sub-
Proportionists. There are also 6.3% (GM1.8) and 4.7% (GM1.2) Spoilers among all observations.

The prevalence of the proportional allocation implies that relatively higher contributors would be rewarded with a rel-
atively higher share of the group production. This is confirmed in Fig. 3 where we observe a clear positive relationship 
between players’ contributions and their allocations from the group production. Fig. 4 depicts the relationship between 
players’ contribution and their average final profit (i.e., their allocation from group production plus uncontributed endow-
ment): the positive correlation still exists for the GM1.8 but is no longer there for the GM1.2. Higher contributors have 
higher total earnings in the GM1.8. But there is no obvious relationship, positive or negative, between contributions and 
total earnings in the GM1.2. This may at least partially explain the lower average contributions and greater diversity of 
session outcomes in the GM1.2.

4.3. Allocation received and contribution decisions

So far, we have established that most players do allocate according to others’ relative contributions and the contribution 
rate is high. In this subsection, we check the causal relationship between these two events. Specifically, we look at the effect 
of the allocation players received in the previous round on their contribution decisions in the current round. Note that the 
allocation a player receives in a certain round is the aggregate result of her two group members’ allocation behaviours, 
and we categorise these as in the previous section.33 Most players are treated by the proportional allocation under most 
circumstances (77.5% in the GM1.8 and 67.7% in the GM1.2), and in many cases all three group members are rewarded with 

32 A deeper investigation of which players use the non-proportional allocation behaviours is provided by probit regressions in Appendix C2. For these 
players, the higher their contribution the more likely they are to be super-proportionists and the less likely to be egalitarians or sub-proportionists.
33 The share player i should receive according to the proportional allocation is qp

i = 1
3 (

ei
ei+e j

+ ei
ei+ek

). When ei + e j = 0 or ei + ek = 0, qp
i = 1

6 and when 
ei + e j + ek = 0, qp

i = 1
3 . The actual fraction player i receives is qi = a ji+aki

3 . Player i is treated by the proportional allocation if |qi − qp
i | ≤ 0.05. Relative to 

this, player i is over-compensated if qi > qp
i + 0.05 and under-compensated if qi < qp

i − 0.05. Since qp
i > 1

3 (or < 1
3 ) as ei >

√
e jek (or < √

e jek), we treat 
i as high (H) (low, L) contributor if i’s contribution is higher (lower) than the geometric mean of the contributions of the other two players in this group. 



L. Dong et al. / Games and Economic Behavior 115 (2019) 209–224 221
Table 3
Determinants of One-Round Contribution Change.

Dependent Variable: One-round Change in Contribution

(1) (2) (3)

Over-compensated High contributor -0.152 -0.124 0.216
(0.109) (0.0810) (0.270)

Over-compensated Low contributor 0.405∗∗ 0.492∗∗ 0.518
(0.204) (0.241) (0.527)

Under-compensated High contributor -1.386∗∗∗ -1.355∗∗∗ -1.521∗∗
(0.232) (0.220) (0.418)

Under-compensated Low contributor 0.795∗∗ 0.983∗∗∗ 3.116∗∗∗
(0.290) (0.240) (0.770)

Others’ average contribution 0.0934∗∗∗ 0.0785∗∗∗ 0.333∗∗
(0.0179) (0.0163) (0.111)

The GM1.2 Treatment 0.0297 0.0346 0.0356
(0.0828) (0.0881) (0.342)

Round -0.155∗∗∗ -0.159∗∗∗
(0.0383) (0.0288)

Constant 2.244∗∗∗ 2.347∗∗∗ -0.636
(0.568) (0.423) (0.617)

Round used 12-20 12-20 12
Data Excluded Yes No No

Clusters 20 20 20
Observations 1158 1620 180

Notes: (1) Column 1 and 2 reports the regression results for random-effects model. Column 3 uses the OLS regression. The standard errors are all clustered 
at the session level. ∗ , ∗∗ and ∗∗∗ indicates significance level at the 10%, 5% and 1% levels, respectively. (2) Column 1 excludes observations where all three 
players contribute equally.

equal shares (47.7% in the GM1.8 and 30.2% in the GM1.2). Note that, in 45% of the total observations in the GM1.8 and 
25.7% in the GM1.2, these two allocation behaviours overlap because all three players contribute equally.

We use random-effect regression to investigate the relationship. Our behavioural equation of the change in contribution 
for player i in round r, �ei,r(≡ ei,r − ei,r−1) is given by:

�ei,r = κ0 + Bi,r−1θ + κ1 OtherContributioni,r−1 + κ2GM1.2 + κ3 Roundi + εi,r

where Bi,r−1 is a vector of dummy variables which indicate how the player was treated at the allocation stage in the pre-
vious round. Recall that a super-proportional allocation over-compensates the high contributor and under-compensates the 
low contributor, while the egalitarian, sub-proportional and spoiler allocations do the opposite—i.e., they over-compensate 
the low contributor and undercompensate the high contributor. We use these features to define our allocation dummies. 
Specifically, B O C H

i,r−1 and BU C L
i,r−1 are dummy variables indicating whether player i was an over-compensated high contributor 

or an under-compensated low contributor in round r −1, as if under a super-proportional allocation; while B O C L
i,r−1 and BU C H

i,r−1
indicate whether i was an over-compensated low contributor or an under-compensated high contributor in round r − 1, as 
if under an egalitarian, sub-proportional or spoiler allocation. These are all measured relative to the proportional allocation 
which is taken as the base case. The variable OtherContributioni,r−1 represents the average contribution of the other two 
members in the player’s group in the previous round. This is intended as a proxy for the player’s belief about the likely 
contributions of the other group members in the current round. The behavioural regulation of conditional cooperation (i.e. 
matching the other group members’ contributions) is well documented in the literature (e.g. Fischbacher et al., 2001; Fis-
chbacher and Gächter, 2010). GM1.2 equals 1 if the player belongs to the treatment GM1.2, Roundi captures the time trend 
and εi,r is an unobservable variable that is assumed to have mean zero and is uncorrelated with other explanatory variables.

In Table 3, we present two random-effects regressions with robust standard errors clustered at the session level, one 
with (column 1) and one without (column 2) data on the “overlap” observations (i.e., those where all players contribute 
equally), and one ordinary least square regression (column 3) focusing only at round 12. We discuss the random effects 
regressions first. Under our assumptions the estimated constants show that players who were treated proportionally in the 
previous round are likely to increase their contributions in the current round. Turning to the estimated coefficients on the 
allocation-treatment variables, it is clear that it is not whether a player is under- or over-compensated that determines 
the direction of change of their contributions, relative to a proportional allocation, but whether they were the high or low 
contributor. A high contributor has a lower increase in contribution (relative to those that received proportional treatment) 

Thus player i’s treatment is over-compensated high contributor (or OCH) when qi > qp
i + 0.05 and ei >

√
e jek ; OCL when qi > qp

i + 0.05 and ei <
√

e jek ; 
UCH when qi < qp

i − 0.05 and ei >
√

e jek ; and UCL when qi < qp
i − 0.05 and ei <

√
e jek .
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Fig. 5. Allocation treatment received in the previous round and player’s one-round change in contribution.

regardless of whether he was over- or under-compensated, though the difference is not statistically significant for the 
over-compensated. Likewise the low contributor increases his contribution (relative to those that received proportional 
treatment) regardless of whether he was over or compensated. In terms of the magnitudes of the coefficients, those on 
the under-compensated variables are larger than those on the corresponding over-compensated variables, which suggests 
that the “punishment” rather than the “reward” aspect inherent in these allocations that is more effective in influencing 
contributions.34 We also find no difference between the treatments in the change in contributions of those subject to a 
proportional allocation as the estimated coefficients on GM1.2 are not significantly different from zero. These results are 
largely unaffected by the inclusion of the overlap observations in column 2.

The estimated coefficient on OtherContribution is consistently positive and significantly different from zero indicating 
that a higher average contribution by the other group members in the previous round generates an increase in a player’s 
contribution in the current round. Likewise, the negative coefficient on Round indicates that the increase in contributions 
get smaller as the rounds progress, other things equal. This is consistent with the concavity of the plots of the contributions 
in Fig. 1.

Fig. 5 relates the average change in contribution to the allocation treatment received in the previous round. These results 
are consistent with those from the regression analysis. The ranking of those whose contributions increase (in absolute 
value) are as follows, first, the under-compensated low contributors, then the over-compensated low contributors, followed 
by those subject to a proportional allocation, and finally the over-compensated high contributors. The under-compensated 
high players in fact reduce their contributions. The changes are approximately the same or smaller in the GM1.2 as the 
GM1.8 regime, which is consistent with the differences in the paths of the contributions under the two regimes in Fig. 1.

Finally, the last column reports the results based on observations from round 12 only, which is the first round in which 
the players receive feedback on the allocation made by the other group members. The average changes in the contributions 
of players who were over-compensated or treated to a proportional allocation in Round 11 are positive and not significantly 
different. A low contributor responds significantly positively and a high contributor responds significantly negatively to being 
under-compensated in Round 11, just as they do in later rounds. But noteworthy here is the magnitude of the estimated 
response of the under-compensated low contributors who increase their contributions by an average of 3.1 in Round 12 
(p < 0.001). Based on the results in columns 1 and 2 we conclude:

Result 3. How players are treated in the allocation stage affects their contribution decisions in the subsequent round. Those players 
who are treated by a proportional allocation tend to increase their contributions. Relative to this, high contributors last round tend 
to have lower contributions this round, and low contributors last round tend to have higher contributions this round. But all tend to 
increase their contributions, except high contributors in the last round who were under-compensated at the allocation stage.

5. Conclusion

Our goal in this study was to propose and experimentally test a simple mechanism in which peers decide on others’ 
payoffs after a joint production stage. While this mechanism does not involve bargaining, each player is able to propose 
an allocation to each of the remaining players. We tested the mechanism in an economic laboratory with groups of three 
players under two regimes differing in the scale of returns of the production function, and found that the majority of 
participants allocated according to other players’ relative contributions in both regimes. Consequently, we observed average 
levels of contribution in both regimes much higher than those occurring under an equal sharing regime, and almost full 
contribution in the production stage in the later rounds of the experiment in the regime with the higher scale of returns. 
We interpret our result as a successful attempt to improve social efficiency by combining social preference with the right 
form of institution.

34 Previous studies also find that the effect of punishment is stronger than the effect of reward (e.g., Andreoni et al., 2003; Sefton et al., 2007).
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The pursuit of self-interest is an important assumption in the traditional mechanism design literature, as elsewhere in 
Economics. Because the GM permits players no role in determining their own share of the surplus at the allocation stage, 
they are free to allocate shares to other players. Thus even purely self-interested players may make proportional or pro-
contribution biased allocations, particularly if they believe that other players will anticipate such behaviour and make full 
contributions leading to the socially optimal outcome. But of course players need not have this belief and need not allocate 
on this basis. Recent behavioural and experimental studies find evidence of various degree of “other-regarding” preferences 
(e.g., Fehr and Schmidt, 1999; Charness and Rabin, 2002; Cox et al., 2007; Benabou and Tirole, 2011). Although not intended 
as a replacement of pure self-interest, richer behavioural assumptions such as fairness and other moral standards can be 
valuable in the design of effective institutions. In our study, we demonstrate that a willingness to allocate on the basis of 
relative contributions, when utilized in an appropriate social institution (the GM), has significant advantages in overcoming 
the free-rider problem in team production and improving social efficiency.

Our experimental setting for the GM fits into the class of contribution games in the Voluntary Contribution Mechanism 
(VCM) literature (Fehr and Gätcher, 2000; Baranski, 2016). In such games, each player can contribute tokens from some 
given endowment to a group fund which is then distributed among the players. While this game can fit into the category of 
games with positive externalities, since the group fund is always greater than the sum of the individual contributions, the 
flexibility in its distribution allows for the possibility that players can be excluded from a share of the fund. This restricts 
the usage of the GM in the context of pure public good games, as pure public goods are indivisible and non-excludable. 
Nevertheless, the GM remains applicable to a class of team production games or profit sharing models (Weitzman and 
Kruse, 1990; Heywood and Jirjahn, 2009), where the production function is additive and exhibits increasing returns. For this 
class of games, the GM is particularly useful if there is a principal or a team manager who cannot observe the contribution 
levels of the agents and whose payoff depends positively on the contributions of these agents.

In our view, such a simple mechanism is worthy of further study. It is cognitively less demanding than other mechanisms, 
and its simplicity should be an advantage in practical applications. In our introduction we noted its potential in assigning 
individual marks for student group work, and reported Galbraith’s observations of its use for allocating bonus payments 
to some New York bankers in the 1920s. Baranski (2016) notes that similar profit allocation decisions arise in certain 
types of business partnership, such as accounting firms, law firms, management consultants, medical groups, and architects’ 
consortiums. Of course any practical application can bring with it complications. For example, if the contributions take the 
form of real effort or real tasks by the agents, rather than “tokens”, it becomes more difficult for the agents to map the 
effort/task levels they observe from their peers to the monetary value and to use this in their allocation. In the context 
of group class assignments the group members may know their relative contributions but they may not know the exact 
relationship between these individual contributions and the assignment’s final grade.

We have introduced the GM in a simple but familiar context. Failure of the GM to produce efficiency gains in these 
experiments would not bode well for its success in more complex and realistic settings. Its success here therefore makes 
a case for further theoretical development and experimental testing. Separate pilot experiments involving a larger group 
size and introducing costs for players to acquire information about others’ contributions indicate that the GM continues to 
give efficiency gains (Dong, 2017). Indeed, larger groups may make the GM even more effective. Because our players had 
identical endowments, we were unable to distinguish between egalitarian, proportional and super- and sub-proportional al-
location behaviour when all players made full contributions. Allowing players to have different endowments would alleviate 
this identification problem. Finally, in our experiments player anonymity and rotation precluded the influence of any per-
sonal relationships on allocation decisions. In reality players would expect such relationships to exist and potentially both 
friendship and fairness to be factors influencing allocations. How this might affect allocation and contribution behaviour is 
a topic worthy of study.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2019 .02 .016.
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